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ABSTRACT 

The equations for residual-stress determinations on solid and hollow 

cylinders are derived from the force-equilibrium principle for the boring- 

out and the turning-off method.  It is shown that the new equations are 

equivalent to the equations first derived by G. Sachs. However, the new 

equations offer considerable advantages because they can readily be solved 

by graphical computation methods. The graphical stress determination is 

described and an example is given. 
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INTRODUCTION 

The boring-out method developed, by Sachs (l.) and its further development 

to the boring-out-turning-off method (2)(3)(M are the only means of determin- 

ing the complete residual stress pattern in specimens having cylindrical sym- 

metry. Among the deficiencies of this method are a) an uncertainty of the 

signs of the stress components; b) the rather elaborate calculations of the 

stresses which also depend upon the subjective evaluation of the strain 

measurements^ and c) the tedious and time-consuming measurements required 

to obtain accurate data. Nevertheless, these tiethods have been used extens- 

ively and by many investigators to obtain practically significant information (5). 

However, recent studies by Buehler (6) and others (?) suggest certain 

modifications which promise considerable improvements and simplifications 

of the theory and particularly the practical applications of these methods» 

Furthermore, Beeuwkes (8) has shown that the Sachs equations can be 

derived from the equilibrium of forces and replaced by simplified formulae 

which permit graphical computation of the stresses from strain functions 

with a minimum of effort. 

In this report the Sachs equations and the corresponding equations for 

the combined boring-out-turning-off are derived following much the same 

reasoning as Beeuwkes. An attempt has been made to put the equations in a 

form which permits graphical determination of the stress distribution by a 

direct and accurate approach. 
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TERMINOLOGY 

6i longitudinal stress 

(3^ tangential stress 

5T radial stress 

CL inside radius, also index for inside surface of cylinder 

o outside radius, also index for outside surface of cylinder 

T instantaneous radius 

k = ^ TT 

Qsf   measured longitudinal strain at either outside or inside 

surface 

0%   measured tangential strain at either outside or inside 

surface 

A    =   lt+ /lit 

6 = tit Ait 
[_    modulus of elasticity 

yt( Poisson's ratio 

Sign convention: l) stresses are positive for tension 

2) df and dr positive 

with increasing f and r for the boring-out process and with decreasing 

f and r for the turning-off method.* 

*This sign convention is equivalent with Sachs' sign convention; however, in- 
consistent with Buehler's, who had df, dr positive with increasing f, r for 
both processes. 

K 



DERIVATION OF THE STRESS EQUATIONS 

General 

The new approach to the derivation of the residual-stress equations 

utilizes the equations for the equilibrium of forces which must be fulfilled 

by a body free from external loads; namely 

f 
fa 

Is 

6; df =o (i) 

J ^ dr =0 (2) 
a 

The longitudinal stresses,CT. , must balance out over the cross-sectional 

area, f^ - fa, and the tangential stresses, 01 , over the longitudinal section 

or radius, b - a. 

The forces In one part of the body, therefore, can be replaced by those 

in another: 

J ^ elf 4-  6- df =0 

= 0 

(3) 

e^cU + ö^dr 
0. 

(^) 

The change in stress in the remaining section of the bar due to the 

removal of a center core containing longitudinal, tangential and radial 

stresses can be expressed in terms of the strains measured on the outside 

surface by means of the generalized Hooke's Law: 

^-b =  T—.i r 
E 

^ ~ 1 - ^ V L 

(V/^t) =E'A 

k+^l) =E,e 

(5) 

(6) 
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Longltud.lna.1 Stress 

If the core of the cylinder from f to f is removed, the force removed 
Or 

is given by 

P- j stM 
'ft/ 

(7) 

This causes a uniform change of the stress distribution in the remaining 

section, i.e. also a change of the surface stresses to 5l + 5^ where   is a 

constant. The stresses must again be in equilibrium, i.e. 

(6t+OoLf = 
f 

^iftß^vO^o 
(8) 

Replacing the first term of equation (8) and using equations (3) and (5) yields 

(9) 

The longitudinal stress removed is then obtained by differentiating equation 

(9) which yields 

e^E'^rLMVOI 
(10) 

Completing the differentiation leads to the well-known Sachs equation, namely 

6t =E'[(Vf)^-Ai] 
(11) 

For practical stress determinations equation (10) represents a simplification 

compared to equation (11) because the longitudinal stress at a point "f" is 

now given by the derivative of a single quantity, or by the slope of the curve 

■*This equation is equivalent to that developed by Beeuvkes (8): ^-E Y dT^tt1"-!." Jj 
However, Beeuvkes' equation leads to a more complicated method of graphical com- 
putation. 
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E'X (f-^ - f) vs. f,  and no further calculations are necessary. 

In the turning-off process metal is removed from the outside, the in- 

f 
side radius "being a. The removed force is again given by  1 5" df 

which is distributed over the remaining section (f - fa). Equivalent to 

equation (9) the force relation for the turning-off process is 

( (12) Mt   = EX (Ho.) 
Differen-ciation of equation (12) gives the longitudinal stress for the turning 

off process 

Gi= E' at K«-Mi (13) 

which again is equivalent to the corresponding equation first given by Sachs 

and Espey (2) and later derived and proved by Buehler (3) and Hanslip {k) 

If a boring-out process has preceded the turning-off process, the force 

relieved by the boring operation, i.e. 

fa 

K<M  =E\a(k-f) (15) 

has to be subtracted. In equation (15) "X.  is the strain value obtained 

on the outside after boring was completed. The complete longitudinal stress 

for the combined boring-out-turning-off process is thus given by 

e,   =  E' li [XJ(-U - \J if 
(16) 
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TangentlaJ- and Radial Stresses 

The equations for the tangential and radial stresses can also he derived 

from a force equilibrium principle. Removing a cylindrical core by "boring 

is equivalent to removing an internal pressure p which acted on the surface 

while the body is still intact. For the inside portion the equilibrium 

equation 

= 1 6,6.. 
(17) 

dr t 

applies, which is derived similar to equation (9) and using the relation 

(18) 

For the outside portion, the tangential stress on the surface 6^ is 

related to p by the formula, using also the equation (6) 

2rZ 

't-b Vr   = t a 
Consequently 

and 

V.   = 

2       ..i 

V-T' 
zs E'e, 

\ etdr  = il-I1 E' 6, 
a, ^r 

(19) 

(20) 

(21) 

Differentiation of equation (21) leads tc the equation for the tangential 

stress as determined by the boring-out method when the strain is measured 

on the outside surface, namely 

^   =   E'i-JMTT^] (22) 
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The radial st.ress is then obtained by using equation (l8) and performing 

the integration resulting in*- 

6, = E'e. 
(23) 

Equations (22) and (23) can easily be shown to be equivalent to the 

corresponding Sachs equations by completing differentiation and replacing 

the radii with their corresponding f-values, namely 

dot  0 -fy-t-f 
6. =E'[(f.-0 7T'e JLf ] 

{2k) 

and 

(25) 

It is, however, convenient to use r and b rather than f-values in these equa- 

tions because of the less complicated graphical evaluation. If f is used as 

an independent variable, 6t  is given by 

^EVf-fi-M^)] 
For the turning-off process equation (21) is replaced by 

t 
Differentiation leads to the desired equation: 

Qi       L ir  ■ ^ IT    >> 

(26) 

(27) 

(28) 

*Beeuwkes (Ö) calculated first 6",. from equation (23) or (25) and thep deteimined 
either g, or (g, -r   )  graphically, see equation (l8): ß, -g _ cLar 

a T 

X. 
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Perforraing the integration according to equation (l8) gives the radial stress 

component as 

R  _  tr' q  r -a 
&r _ t ^ Zr1 (29) 

During the preceding boring-out process tangential and radial stresses have 

hesn removed. This is equivalent to removing a pressure acting at the inside 

surface (radius = a) given by 

Pa  = V  = E Q^ -j^Z (30) 

This pressure distributes itself according to 

6-r = E'ev^ öD 

which has to be subtracted from ^determined from equation (29), and thus 

gives the radial stress for the combined boring-cut-turning-off process: 

where 9bais the strain value obtained on the outside surface corresponding 

to an inside radius ■- a. Differentiation of equation (32) according to 

equation (l8) gives 

ol  f ' t f * „2\_Q (rll?1 1 ^ = t^\iw-*y^X)\(33, 
which is the tangential stress component for the combined boring-out-turning 

off method. 
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GRAPHICAL DETERMINATION OF STRESSES 

With the new stress equations 

s« ^Vft-f)' 

it is possible to use simple graphical methods for the computation of the 

stresses. 

The longitudinal stress is constructed from a plot of L A (j-i," J  /vs. 

f by graphical slope measurements as illustrated in Fig. 1. 

The tangential stress is determined in a similar wav from a plot of 

r'f\  JLJLL— 
t "  Z ^~  vs• r'  as iilustrated in Fig. 2. 

From the same plot the radial stress is obtained as demonstrated in 

Fig. 3- 

In constructing these graphs it is practical to select a power of 10 

units of the area and radius respectively as unit of the abscissa and a power 

of 10 units of the strain function as ordinate. Then the stress becomes 

equal to the ordinate difference for the selected abscissa unit and thus 

can readily be trajisferred to a separate grcph. It is convenient to determine 

these stresses for 0.5, 1.0, 1.5., etc. units of the abscissa, and, in addition, 

for a few selected values, including the boundaries. 

Example of Stress Determination 

The method is further illustrated for an actual case (9). The measured 

strain data are presented in Table I together with the quantities necessary 

K 



-10- 

for constructing the two base curves. The two strain functions 

a. v 

E A< (f -f) vs. | and E 3^  "r  vs.T are represented in Figs. 

ka  and 5a. The stresses derived from these are shown in Figs. 4b and 5b. 

They are found to differ slightly from those derived in the reference (9) 

by the old method. It appears, however, that the graphical method yields 

slightly more accurate values particularly for the outer surface, as the 

strain functions for this position must smoothly approach zero. 
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1'ABLE I 

TEST RESULTS FROM REFERENCE (9) 

Outside Radius 

Original Inside Radius r a 

asurement r 

nun 

0 39.035 

1 39.965 

2 45.185 

3 50.090 

k 51.260 

5 56.750 

6 60.930 

7 66.155 

8 70.025 

9 71.760 

10 75.225 

11 79.085 

12 82.620 

13 86.110 

ik 88.375 

15 91.010 

16 93-225 

17 96.515 

18 IOO.295 

19 103.140 

20 105.315 

21 107-935 

22 109.865 

mnr- 

4790 

5020 

6410 

7890 

8250 

10110 

11670 

13790 

15420 

16200 

17780 

19650 

21450 

23300 

24500 

26100 

27300 

29600 

31600 

33400 

34800 

36500 

37900 

— »*-«■ *-—  V ^ / 

E' =23.100 kg/mm2 

= 117.05 mm 
fb = 43;040 mm

2 

= 39.035 mm 
fa = 4790 ram2 

E,A(fb 

10^ 

- f)   E'Q frh
2 - r2) 

2   2r  ' 

0 0 

-0.527 -0.140 

1.862 2.503 
4.466 3^719 

4.983 3.9^2 

9.966 4.919 
14.784 5.472 

20.136 6.023 

22.588 6.080 

24.368 6.125 

27.252 6.322 

29.558 6.177 

30.126 5.968 

30.965 5.598 

31.610 5.474 

30.213 5.012 

29.637 4.847 

26.207 4.067 

23.603 3.384 

20.669 2.902 

17.878 2.464 

14.749 1.960 

11.510 1.570 
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LONGITUDINAL 
STRAIN FUNCTION 

FIG. 1    DETERMINATION OF LONGITUDINAL STRESS 

a.) PLOT E'A (f -f) vs. f 
b 

b. ) DRAW TANGENT ON POINT P FOR WHICH THE 
STRESS IS TO BE DETERMINED. 

c.) TRANSFER TANGENT t TO t' SO THAT IT INTER- 
SECTS THE ABSCISSA AT THE POINT (f-l).10x UNITS. 

d.) THE INTERSECTION OF t' AND THE ORDINATE THROUGH 
P GIVES THE DESIRED STRESS 6^ • 
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3 h 

RADIUS r 

5 
i-Cr UNITS 

FIG. 2 DETERMINATION OF TANGENTIAL STRESS. 

2 2 
a.) PLOT E'Q b "r AGAINST RADIUS r. 

2r 
b.) DRAW TANGENT t ON POINT P FOR WHICH 

THE STRESS IS TO BE DETERMINED 0 

c.) TRANSFER TANGENT t TO t' SO THAT IT 
INTERSECTS THE ABSCISSA AT THE POINT 
(r-l)"10x UNITS. 

d.) THE INTERSECTION OF t' AND THE ORDINATE 
THROUGH P GIVES THE DESIRED STRESsdL. 
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If 
^ 
3 
H 3 
H 

CM 

h '? 
I OJ Pd 

OJ ^ fl PM 

w 1 
^ 

CJ 
t- ■I fc 0 

g   21- 
H 

5 
co   x     1 
2   ^ 
co    H   0 

RADIUS r - 10x UNITS 

FIG. 3   DETERMINATION OF RADIAL STRESS 

2  2 
a.) PLOT E'^ b Z £' vs. r 

2r 

b.) DRAW CONNECTION s THROUGH ORIGIN (0, 0) AND 
POINT P FOR WHICH STRESS HAS TO BE DETERMINED. 

c. ) TRANSFER s TO s' SO THAT IT INTERSECTS d = 0 
AT THE POINT (r-l).10x UNITS. 

d.) THE INTERSECTION OF ß' AND THE ORDINATE THROUGH 
P GIVES THE DESIRED S^ESS ^ r. 
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AESA f - 10^ mm2 

FIG. '+   LONGITUDINAL STRAIN FUNCTION AND LONGITUDINAL STRESS. 
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m.  5    TANGENTIAL S^HATN FUNCTION AND TANGENTIAL AND RADIAL STRESS. 


